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Summary

We consider a general multivariate linear regression model Y;=X’;B +¢;, i=1,..,n, where Y;
and &; are p-vector random variables, X;is a gxp design matrix and B is a ¢g-vector of unknown
parameters. We develop a general theory for the estimation of B and tests of hypotheses on B using
the concepts of M-estimation. Specifically, we consider the estimation of B by minimizing

Z’; p (Yi—X7B), where the discrepancy function, p, is convex. The special case of the MANOVA

model, where X has a simple structure, is considered in some detail.

1. Introduction

We consider a general p-variate regression model
Y;=X;B+¢g, i=1,.n , (1.1)

where Y; is a p-vector of observable random variables, X; is a gxp design matrix, Bisa
g-vector of unknown parameters and g,,....€, are iid p-vector noise random variables. The
model (1.1) is more general than the usual MANOV A model

Y;=Bx;+¢€, i=l..n , 1.2)

where B is an mxp matrix of regression parameters and x; is an m-vector of concomitant
(or design) variables. Note that (1.2) can be written as (1.1) defining B = vec B (i.e., obtained
by writing the columns of B one below the other starting from the first) and X/=1® x!
using the notation of a Kronecker product (Rao, 1973, p.29).

Key words: Fisher-Hsu distribution, least distances estimation, M-estimation, MANOVA,
Rao’s score test, roots of determinantal equation, Wald test
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In this paper, we provide a survey of some recent results on estimation and testing of
hypotheses concerning the B parameters based on M-estimation theory. It may be recalled
that one method of obtaining M-estimates is to minimize

3 p(Y, - X/ B) (13)
=1

with respect to B choosing a suitable discrepancy function p of a p-vector variable. Another
method is to minimize

7 log B+ 3 p &Y, - X; B) (14)
i=1

with respect to P and . In this survey we consider the method (1.3) choosing p to be a
convex function. Although such a choice of p covers 2 wide variety of cases, it may not be
suitable when we want to exercise a high degree of control over the influesce of large values
of the error variables €,,....€, . However, the choice of a convex function enables us to define
the estimate without ambiguity and to investigate its properties making a minimal set of
assumptions on the model (1.2).

The theory of M-estimation started with the seminal work of Huber (1964) and there is
now considerable literature on the subject. For references to some important current contri-
butions on the subject, the reader is referred to the bibliographic sections in the papers by
Bai, Rao and Wu (1991), Bai, Rao and Zhao (1990), McKean and Schrader (1987), Rao
(1988) and Schrader and Hettmansperger (1980).

We make the following assumptions on the model (1.1) and the discrepancy function p
in (1.4).

(A}) p(x) is a convex function of a p-vector variable x.

(Ay) Let y(x) be any choice of the vector derivative of p(x) and denote by D the set
of discontinuity points of y, which is the same for all choices of y. Further let F be the
common distribution function of g,,....€, , the error vectors in the model (1.1). Then F(D)
= 0. [This condition is imposed to provide unique values for certain functionals of y which
appear in our discussion, and it automatically holds when p is differentiable. For instance,
if p(x)=IxI" , r>1, the condition does not impose any restriction on F. We conjecture
that this condition is crucial for asymptotic normality but not necessarily for establishing
consistency of estimates.]
(A3) For a p-vector u, there exists a positive definite matrix A such that
Ely(g+u) ]=Au+o(lull) as [l —o.

(A) g=Ell Y(g +u)— \|l(£,-)|| % exists for all small u (e, lull is small) and g is
continuous at u = 0.

(As) E [w(e)y(e)]1=I (positive definite).
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(As) S,=X;X|+ ...+ X,Xis nonsingular for n>n, (some value of n) and

d?=max tr(X’S;'X) > 0 as n— oo,
1<isn

2. Main theorems for the general model

A
We state the main theorems conceming [, the M-estimate of B using (1.3), and tests of
hypotheses on B for the general model. The proofs are given in Bai, Rao and Wu (1991).

Theorem 2.1. Under the assumptions (A;)—(Ag)

G) B Py (true value)in pr. , @.1)
(i) T"KB - By) 3 N, 0.1, @2)

where
T=Y XIX; and K=Y X,AX] . 2.3)

=1 =1

The result (2.1) enables us to provide standard errors of individual estimates, obtain
simultaneous confidence intervals for all or subsets of the parameters and test linear iypot-
heses on B in large samples. The distribution given in Theorem 2.2 can be used to test the
hypothesis H'f=v, where H is an rxg matrix of rank r.

Theorem 2.2. Under the assumptions (A;)—(Ag) the test statistic
A i e b A
Uy=HB—y (WK TK'H)™ (HB-7) @24
is asymptotically distributed as xz (chi-square) on r degrees of freedom.

We call U, , the Wald type statistic. There is an alternative statistic of the likelihood ratio
type

U=Y p(Yi-X;B- T p (Y- X/B) . 2.5)

=1 =1

where B is the value of B which minimizes (1.3) subject to the null hypothesis H'f=1.
Theorem 2.3 characterizes the asymptotic distribution of (2.5).

Theorem 2.3. The statistic U, is asymptotically distributed as
Z'[T*K'H WK'H)'HK'TZ | (2.6)

where Z is an m-dimensional normal variable with independently distributed components.
This is, in general, a mixture of chi-square distributions.

There is a third type of statistic which is Rao’s score type. Define
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EB) =) X, y(Y;-X:B) ., @7
=1

which may be called the score function, and let ﬁ be an estimate of B as defined in (2:5).
Theorem 2.4. The Rao’s score statistic for testing HB=vy is
Us=E@) T EB) 2.8)

which is asymptotically distributed as xz on r degrees of freedom.

It is seen that while the statistics U, and U, involve both the matrices A and I, the
statistic Us involves only I. If these are not known, they can be consistently estimated and

substituted for the unknown matrices, and the resulting statistics still have the asymptotic
distributions mentioned in Theorem 2.1-2.3. For instance an estimate of I is

F= 3 (- Xy, - xBy 29)
=1

If y is continuously differentiable and its derivative is denoted by a pxp matrix function
M. then an estimate of A is

I A
A—ng.n(Y;—X,B)- (2.10)

As an example let us choose

P(X) = p(x;....x,) = (=xH)" = | x| . (2.11)
for which

= if x#0
yoo={Tx * **9: 2.12)

0 ifix=0,

1 xx’ .
veo={Tl! ~Jp) i x#0, 2.13)

0 i x ="

In this case, the estimates of I' and A are

n

-

AN
b (2.14)
All2 »
= llell

=

A
=

X |-



n AA,
A=IY18Ia- 5y | 2.15
w2 1817 o
A A
where e;=Y;-X/B.
The method of estimation based on the discrepancy function (2.11) is called the least

distances (LD) method and the related asymptotic theory was developed in Bai, Chen, Miao
and Rao (1990).

3. Main theorems for the MANOVA model

Now, we consider a special case of the general model (1.1), usually known as the
MANOVA model,

Yi = B’x" S 8" N l = 1,...,” ) (3.1)

where Y; is p-vector, B is an mxp matrix of regression parameters and x; is an m-vector
of independent variable. The discrepancy function p is chosen to be convex and the condi-
tions (A,)-(As) imposed on the model (3.1) are the same as those in Section 1. The condition
(Ag) is changed to

(Ag) S,=xX]+...+x,x, is positive definite for n > n, (some value) and

d? = max XS'x; > 0 as n — oo,
1<i<n

We denote by B an estimate of B obtained by minimizing
2. p (Y;-Bx) 32)
=1

and by B an estimate of B obtained by minimizing (3.2) subject to given hypothesis
P'B=C, where P is an mxr given matrix of rank r and C, is a given rXp matrix.
We have the following theorems:

Theorem 3.1. Under the assumptions (A4,)~(As) and (Aq) ,
() vecS! (B-By) 3N,,(0,ATA" ®1) , 33)
(i) Under the null hypothesis P'B = C, , the pxp matrix statistic
W,.= @B - cy®s;'py @B - Cy) (3.4)
has asymptotically central Wishart distribution

W,(r,A"TA™) 3.5)



94

ie., with r degrees of freedom and covariance matrix A" TA™" .

A
(iii) Let Aandr be consistent estimates of A and " respectively. Then, the test criteria
for the null hypothesis P’B = Co can be constructed from the roots of the determinantal

equation
|W,-6ATA™ | =0 (3.6)

and the asymptotic distribution of the roots is the same as that obtained by Fisher and Hsu
in the usual least squares MANOV A theory under the assumption of normality.

The reader is referred to Rao (1973, PP. 556-560) for a discussion of the tests based on

the roots of (3.6) and references to original papers by Fisher and Hsu.
An alternative approach based on Rao’s score statistic is given in Theorem 3.2.

Theorem 3.2. Let

EB) = Y x; [W(Y; - B'x)]’ (3.7)

=]

and define
R,=E(B)S,'EB) | (3.8)

where B is an estimate of B as defined in (3.2). Then:
() The asymptotic distribution of R, is W,(r,T).
(ii) The asymptotic distribution of the roots of the determinantal equation

IR,=6'| =0 (3.9)

have the same asymptotic distribution as those of the equation (3.6).

It may be noted that the test criteria based on (3.6) involve both A and f‘ whereas those
based on (3.9) involve only f‘ L

Tests of the type (3.6) and (3.9) have been introduced earlier in particular cases by Sen
(1982), Singer and Sen ( 1985) in the multivariate case and by Schrader and Hettmansperger
(1980) in the univariate case. However, there are some noticeable differences between our
approach and theirs. We use fewer assumptions which may be due to our choice of the
discrepancy function as a convex function. Further we suggest the use of different consistent
estimates of A andI™ .

To complete the theory of M-estimation and inference based on it for the MANOVA
model, we need to provide consistent estimates of A and T independently of the null
hypothesis.

A natural estimate of T is
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A —1 " A ’ A ’ ’
F=n" Y [W(Y;- Bx)Iw(Y;, - Bx)]" , (3.10)
=1

A
where B is the unrestricted estimate of B as defined in (3.2). To estimate A, we take a
pXp nonsingular matrix Z and denote its columns by {,....,.(, Take h=h,>0 such that

h,/d,—>v®, h,—0 and liminfnk’>0 (3.11)

n—oeo

where d, is as defined in assumption (Ag). Define

A A
Nik= W(Y, - B'x; +h Ck) = \II(Y‘ = B,x,' —h CI) 2 = 1,...,”; = 1,...,p s (3.12)
and use the pXxp matrix

A=Y M2 ... )z (3.13)

i=1
as an estimate of A.

Theorem 3.3. Under the assumptions (A;)-(As) and (Ag)” on the model (3.1)
f‘—)l‘ and f\—)A inpr. as n—eo.

The proofs of the theorems in this section are given in Bai, Rao and Zhao (1990).
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